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Abstract

The paper demonstrates a method of simultaneously test-
ing the spatial and tonal resolution of a camera. Unlike
the modulation transfer function which has been used in the
past, the measure proposed rates the resolution as a sin-
gle number rather than a response over varied resolution,
simplifying the measure and making it possible to compare
the performance of different camera cameras easily. Previ-
ous work was subject to perturbations caused by aliasing at
high frequencies. The measure proposed is immune to such
perturbations, and is therefore appropriate for measuring a
wide range of image sensing systems.

1. Introduction

Often commercial digital cameras are evaluated by their
pixel count. From a signal processing viewpoint, pixel
count is simply the spatial sampling rate of the camera.
As in any quantimetric device, increasing the sampling rate
generally improves the resolution of the camera. Thus, in-
creasing the pixel count general increases the frequency of
the image data we sample when taking a photograph. What
is not quantified by pixel count is the tonal resolution of the
camera. Fortunately, there is also a measure for this used by
photographers and scientists alike, the modulation transfer
function. However, the problem with evaluating a camera
from the modulation transfer function is precisely that is is
a function. As a generalization, it is much easier to com-
pare digital cameras by a single number, for example pixel
count. However, pixel count is not an effective method of
comparing digital cameras. Though this does tell the ob-
server about the spatial sampling in the sensor array, it says
nothing about the tonal resolution or the quality of the op-
tics involved (to mention a few of the many problems).

What is necessary is a single figure which measures the
overall sensing ability of the camera. This is precisely what
was attempted in [5]. However, though not mentioned in

the work to any extent, the measure is problematic in that is
does not consider the effect of aliasing. Because of aliasing,
Gabor-Heisenberg measures in each of the color channels is
artificially high. The techniques and methods proposed in
this work attempt to overcome these inadequacies, as well
as improving the effectiveness of the method overall.

1.1 Why the Heisenberg-Gabor technique
is a reasonable means of measure

As mentioned, what is wanted is a single number repre-
senting the effectiveness of a digital camera’s sensing abil-
ity. Certainly pixel count only tells us about the spatial sam-
pling rate of the sensor, but tells us nothing about such as-
pects as the point spread function of the optics used. Con-
trarily, the modulation transfer function does tell us about
tonal and spatial resolution of a system simultaneously [12]
[13], but is a function, not a number. One may consider
simply integrating the modulation transfer function[13], as
the integral ∫ ∞

0

MTF (f) (1)

where f is a given frequency and MTF (f) is the mod-
ulation transfer at frequency f . However, if the camera
performs well in the presence of high frequency content,
it would be more informative if the measure would reward
such an ability. This is exactly what the Gabor-Heisenberg
method does.

1.2 Defining the Heisenberg-Gabor Mea-
sure

Using Heisenberg’s uncertainty relation[3], Gabor pro-
poses the concept of “effective frequency width” ∆f and
“the effective duration” ∆t of a signal in his 1946 paper[2].
To measure the modulation transfer function (and possibly
the corresponding point-spread function of the camera), we
propose to use Gabor’s ∆f measure to quantify the resolu-
tion of a given camera. As the modulation transfer function
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may be viewed as a spatial frequency signal, we consider its
effective frequency.

1.3 Analytic Background

To find the values of ∆f , the simplest method uses the
first and second moments of the signal. Specifically we
have,

∆f =
[
2π

(
f − f̄

)2
] 1

2

. (2)

Note that for ease of calculation, the use of the statistical
identity

(
f − f̄

)2 = f̄2 + (f̄)2 is utilized. Given any signal
s(f) and its corresponding quadrature signal σ(f) as in [2]
we define a weight function

ψ∗ψ =
[
s(f)2

]
+

[
σ(f)2

]
(3)

where the asterisk denotes the complex conjugate of the re-
sulting analytic signal. The weight function is therefore the
square of the absolute value of the signal. This can be con-
sidered the “power” of the signal and will be referred to by
this name in what follows. Following the logic of Gabor,
we do not consider the moments themselves, but rather the
moments divided byM0. For example, in our case we have:

f̄ =
∫
ψ∗fψdf∫
ψ∗ψdf

f̄2 =
∫
ψ∗f2ψdt∫
ψ∗ψdf

. (4)

Finally, we note the fact that the spatial frequency signal
(the modulation transfer function), and the point spread
function are related by a Fourier transform. This is what
gives rise to the factor of 2π in the definition of ∆t and ∆f .
Also, the point spread function may be found simply by tak-
ing the discrete Fourier transform of a symmetric version of
the modulation transfer function. The symmetric modula-
tion transfer function is produced by assuming the response
of the imaging system will be identical for negative frequen-
cies as positive frequencies, therefore enabling us to mirror
the MTF around the y-axis.

2 Creating a test environment

We wish to create an simple yet effective method of pro-
ducing test patterns to be imaged by the digital camera we
wish to measure. In the past, a single test pattern of increas-
ing spatial frequency was printed and the camera pointed
at the test pattern. This method, though simple has many
drawbacks. Typically, the printed pattern increases in spa-
tial frequency exponentially (an example of this is shown
in figure 2). To perform any reliable computations on the
test pattern, the pattern must first be linearized, resulting in

Figure 1. The basic exponentially increas-
ing modulation transfer function test pattern
used by previous testing routines.

errors. Furthermore in calculating the frequency of modu-
lation at any point the pixel position must be considered in
the image and the frequency then derived. This computa-
tion is approximate at best. Even if the the chart is correctly
aligned, such effects as barrel distortion in the lens will per-
turb the frequency of the pattern imaged. The method we
propose side-steps these issues.

Camera field of View

Monitor (1440 pixels)

Camera

Lens

Imaging plane

Image of monitor
(290 sensor pixels)Camera sensor

  (3038 pixels)

Figure 2. An overview of the test setup used.
The camera was pointed at a monitor display-
ing a test pattern (the horizontal resolution
of the monitor is 1440 pixels). The camera
is far enough from the monitor such that the
resolution of the monitor from the viewpoint
of the camera is large enough to be consid-
ered continuous. In the case of imaging the
green channel (which is of higher resolution
than the blue or red channels), the image of
the monitor on the sensor array of the cam-
era comprised 290 pixels.

We generated a test pattern displayed on a standard
LCD monitor using a simple openGL program available on
http://www.eyetap.org/∼corey/CODE. The openGL com-
ponent of the program produces a test pattern by linearly
varying the pixel intensity in a sinusoidal pattern. A few of
the patterns are shown in figure 2. Given that the camera
being tested is PTP compliant, the program automates the
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testing procedure by actuating the camera after each pat-
tern is produced and then downloaded to a computer which
is both producing the images displayed on the monitor and
actuating the camera. However, just varying the pixel inten-

Figure 3. Three of the many (approximately
250) test patterns presented to the digital
cameras by means of an LCD monitor. Each
test pattern increases by one cycle starting
from one cycle and ending at 250 cycles.

sity is insufficient when generating images to be displayed
by the monitor.

2.1 Calibrating an monitor for the linear
display of images

OpenGL was used to create and display the test pat-
terns used. Originally, the command to change colours (gl-
Color3f) was used to form sinusoid patterns by drawing
lines one monitor pixel wide. Because of the distance the
monitor was from the camera, the sinusoid pattern would
be practically continuous rather than discrete pixels. This
was indeed the case, however, the sinusoidal intensities sup-
plied (though arranged linearly) were not displayed linearly
by the monitor as light intensities.

Monitors generally use range expansion[9][7]. Not
knowing at first whether the glColor3f dealt with this issue
or not, we proceeded with the tests. When the function re-
covered through imaging the monitor was compared to the
function used to generate sinusoidal patterns using the gl-
Color3f function, the results did not match the intensities.
This phenomenon is shown in figure 4.
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Figure 4. The result of applying a linearly
varying sinusoidal pattern to the OpenGL gl-
Color3f parameter, imaging the result, and
comparing the original function. The result-
ing function and the original function do not
match in intensities due to the range ex-
panded effect of the monitor.

To calibrate the monitor, the resolution test program
was changed such that the entire monitor only displayed
one pixel intensity per image. The intensity of the
pixel was linearly varied in 100 steps from 0 to 1 and
the camera automatically actuated by the program at
each step. Again, this modified program is available at
http://www.eyetap.org/∼corey/CODE. It should be noted
that for the purpose of testing resolution, the digital cam-
era tested should be set to RAW mode if possible. Previous
work has shown that in this mode, the 12-bit output in the
case of Nikon and Canon digital SLR cameras is indeed lin-
ear in relation to the quantity of light observed at each sen-
sor photosite [4]. Thus we may look at the linear represen-
tation of the output of the camera to find the nonlinearities
of the monitor. The results of this measurement are shown
in figure 5.

Knowing the nonlinearity in the monitor, and given that
the relation y = xγ fits the non-linearity well, we may first
apply the inverse gamma correction x = y

1
γ to the OpenGL

glColor3f parameter.
Once again we attempted imaging the camera test pattern
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Figure 5. The results of imaging a linearly
varying intensity (glColor3f parameter) on a
monitor and imaging the result. What is
clearly displayed is the range expanding ef-
fect present. It is commonly known that
gamma correction is used when displaying
photoquantigraphic intensities, thus we fit
the curve xγ to the data using a typical least-
squares approach. As shown by the figure,
the power relation fits the data collected. The
gamma correction suspected is confirmed.

with the inverse gamma correction applied to the sinusoidal
signal. The function (without the gamma correction) was
compared to the recovered intensities and is shown in figure
6. The recovered test patterns for a few selected frequen-
cies are shown in figure 7. The bottom-most image in figure
7 does demonstrate significant aliasing. This is something
that was not considered in the development of the modula-
tion transfer function, which was initially developed for the
measurement of resolution in analog film cameras. Alias-
ing does not occur in such a case where the point-spread
function of the imaging system is a greater factor. In such
a system, the imaged test patterns move toward a monotone
50% grey response evenly rather than aliasing. In our case
of testing digital cameras, the effect of aliasing is a signifi-
cant problem which must be considered.

2.2 Collecting accurate image data

As mentioned, previous work has shown that the RAW
data output on the cameras we tested (the Nikon D70 and
D2X) are indeed linear in regard to the quantities of light
observed. However, to ensure the accuracy of the resolu-
tions we wish to measure, it is critical to process the data
carefully. If the camera does not produce linear output by
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Figure 6. The result of imaging the in-
verse gamma-corrected test pattern against
the original function. Applying the inverse
gamma correction shows that the recovered
signal is very close to the displayed intensi-
ties, allowing for the accurate measurement
of camera resolution.

means of RAW files, for example only outputs JPEG files,
the range compression of the camera must be accounted for.
Correcting for this non-linearity in the camera is a well-
studied topic. If there access to a camera which produces
linear output, this may be used to calibrate a given moni-
tor, and then this calibrated monitor may be used to find the
range compression in the camera in question which does not
supply linear output. However, if this is not the case, much
work deals with finding camera response functions without
tonally calibrated test patterns (for example [6][1][11][4]).

In the case of using RAW files, we have the op-
portunity to test a camera’s resolution with increased
accuracy. The data in a RAW file is the uninterpo-
lated sensor data from the Bayer pattern layout of the
sensor array. Programs such as dcraw (available at
http://www.cybercom.net/∼dcoffin/dcraw/) allow us to de-
code this raw data, however apply Bayer interpolation
to get red, green, and blue values for each pixel lo-
cation. Minor as this may seem, it will still perturb
our data and may easily be rectified. A modified ver-
sion of dcraw (entitled dcraw nointerp) is available from
http://www.eyetap.org/∼corey/CODE, along with various
other simple C programs to aid in the management of the
resulting 16-bit PPM files necessary for accurate computa-
tions. In essence, for the camera we tested, only untainted
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Figure 7. The images recovered when the
inverse gamma corrected test patterns pre-
sented in figure 2 were displayed and then
photographed. The images are that of 5 cy-
cles per monitor width (24.8 cycles per im-
age width) (top), 50 cycles per monitor width
(248.3 cycles per image width) (middle) and
200 cycles per monitor width (993.1 cycles
per image width) (bottom). Note that in the
bottom image there is significant aliasing.

raw sensor data was used for the computations.

2.3 Using saturation to exploit the full dy-
namic range of a camera

Saturation is usually a problem when finding camera re-
sponse functions and calibrating a camera. However, using
our technique, saturation may be used to aid us in using an
exposure time which exploits the dynamic range of the cam-
era. Figure 8 shows the effect of saturation clearly. The test
image in this case was taken with an open Fstop setting of
3.5 and an exposure time of 1.3 seconds. Given the linear
nature of the data, we see that reducing the exposure time
to the closest available setting smaller than 0.38 will maxi-
mize the camera’s sensing range. In the case of the Nikon
cameras used, this optimal setting is 0.33 seconds.

2.4 An alternate computation

The general purpose of this paper is to outline a method
of measuring an imaging system’s resolution that does not
suffer from errors in computation due to aliasing. This
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Figure 8. The results of comparing the origi-
nal test function to a saturated version of the
recovered function. From the figure, it be-
comes evident as to how to set the exposure
time to maximize the dynamic range captured
by the camera.

is to say, it improves the technique presented in [5]. For
that reason the underlying function used to produce the
figure-of-merit was the modulation transfer function of the
camera. Alternatively, using the new testing technique an-
other function arises. When calculating the MTF for a par-
ticular frequency, the sinsusoidal test pattern is generally
repeated several times (there are several cycles present).
Thus, we must base our calculation on either the maximum
of the peaks of the cycles and the minimum of the valleys,
or choose to average the maximums and minimums. We
chose to take the maximum of peaks and minimum of val-
leys. However, a second method arises. If we take the dis-
crete Fourier transform (DFT) of the signal, we will get
a response in the Fourier spectrum corresponding to the
strength of the signal. If the contrast between the peaks
and valleys are high, as we expect them to be in the low
frequencies, this response will be high. Conversely, with a
low contrast (low MTF) this signal will also be weak. The
alternative measure is simply to record this response for the
lowest frequency (which we expect to be the strongest), and
use it to normalize higher frequency responses. Thus, we
expect the range of the measurement to be [0, 1]. We ex-
pected that this calculation would closely mirror the MTF
results, and present this computation in future results, such
as figure 9.
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3 Processing results and accounting for alias-
ing

As stated, an unfortunate consequence of using the mod-
ulation transfer function as a basis to create a single figure-
of-merit for a digital camera is the function’s inability to
deal with aliasing. When aliasing occurs, the figure-of-
merit should ideally reflect this. One can clearly see the
effects of aliasing on the modulation transfer function in
figure 9. The figure shows both the modulation transfer
function at given frequencies along with the associated im-
pulse response location in the discrete Fourier transform of
the observed signal. The first evidence of a problem in the
modulation transfer function occurs close to the Nyquist
frequency. At this point in the figure, the modulation trans-
fer function parts from its previous monotonically decreas-
ing property (we expect that the modulation transfer func-
tion decreases as the frequency tested increases). From this
point on, the modulation transfer function is no longer ac-
curately conveying the resolution of the camera. Rather, the
function is deriving its value from a signal which is not that
of the input signal, but rather an aliased (and therefore in-
correct) representation of the signal. For this reason, we
propose a modified version of the modulation transfer func-
tion whose value is zero beginning at the frequency at which
the aliasing first appears. When calculating the Heisenberg-
Gabor figure-of-merit, the second moment is key in the
computation of the value. In these frequencies where alias-
ing occurs, not only will the value of the modulation trans-
fer function be artificially high, but this effect will be am-
plified by the very nature of the computation of the second
moment. Thus, we believe setting the modified modulation
transfer function to zero at these frequencies justifiable. The
resulting function applied to the modulation transfer func-
tion of the green channel of the Nikon D70 is shown in fig-
ure 10.

3.1 Completing the measure

To this point in the work, all computations have been
done on the green channel of the Nikon D70 with only the
horizontal resolution being tested. Furthermore, there has
been no mention of the Heisenberg-Gabor figure-of-merit.
However, given the work that has been done, using the mod-
ified modulation transfer function, the Heisenberg-Gabor
value is easy to compute. Furthermore, the test was done
with a vertical sinusoid pattern, and the red, green, and blue
values computed for both directions. These values are re-
ported in table 1. From these values, using the technique
in [5], a Heisenberg-Gabor figure-of-merit was found for a
Nikon D70.
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Figure 10. The figure shows the modified
modulation transfer function used in our
computation of the Heisenberg-Gabor figure-
of-merit. The left hand side of the function
corresponding to lower frequencies is identi-
cal to that presented in figure 9. However at
the point where the aliasing begins (the loca-
tion of the X in figure 9) we have imposed that
the function drops to 0, reflecting the ever in-
creasing inaccuracies inherent with aliasing
of the signal.

D70 (Nikkor 18-70mm lens)
horizontal test green 2020.77 hg
horizontal test red 1076.24 hg
horizontal test blue 1100.15 hg
vertical test green 1199.02 hg
vertical test red 870.666 hg
vertical test blue 868.776 hg

Table 1. Results from calculating the
Heisenberg-Gabor figure of merit on all
colour channels of a Nikon D70 and D2X in
both the vertical and horizontal directions.
The units shown (hg or Heisenberg-Gabors)
are the result of computing the ∆f mea-
surement with frequencies represented in
cycles/image width or cycles/image height.

3.1.1 Simultaneously evaluating colour channels and
test directions

We must remember that the measure may be taken in mul-
tiple directions and locations on the imaging system. We
chose to measure the orthogonal vertical and horizontal di-
rections, given the typical pixel layouts on imaging sensors.
The horizontal measure, we choose to label∆f hor and the
vertical measure ∆f vert. Because we wish to maximize both
the vertical and horizontal components of the ∆f measure,
a final measure of sensor resolution in one colour channel is
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Figure 9. The top figure is a plot of the modulation transfer function along with a normalized plot of
the frequency response of the Fourier transform at the point corresponding to the frequency of the
test pattern. The bottom plot shows the location of the maximum response in the neighbourhood of
the assumed frequency response of the test pattern. As the top figure progresses toward the Nyquist
frequency, the modulation transfer and frequency response decrease as expected. At a point just
before the Nyquist frequency, we begin to observe anomalies in both the modulation transfer and
the frequency response.

proposed which is simply

∆fV H =∆f vert × ∆f hor (5)

The previous work in [5] shows how to to derive a sin-
gle figure-of-merit (∆fV H ) which may be applied to each
of the colour channels taken from the uninterpolated Bayer
pattern. One possibility is to only test and report the result
for the green channel. This certainly makes sense from the
perspective that the sensor array is populated more densely
with green sensors, and the eye is most sensitive to light
in the green range. Unfortunately, if the camera suffered
from distortions in the red and blue channels, such a mea-
sure would be blind to this problem. In most digital cameras
and imaging systems, the green channel will have a higher
resolution which coincides with human perception. For this
reason, we are suggesting that a valid measure of the three
channels is to perform a YCbCr transformation on the val-

ues of the three channels, and take the Y component as a
measure of the final sensor resolution. We term this mea-
sure ∆fY , which may be calculated as:

∆fY =0.299∆fV H(Red) + 0.586∆fV H(Green)+

0.114∆fV H(Blue) (6)

The computation results in a final figure-of-merit of 1.809×
106 rgbhg (RGB Heisenberg-Gabors) for the Nikon D70
with a Nikkor 18-70mm lens.

4 Continued Research

The modified modulation transfer function in low frequen-
cies decays monotonically largely because of the lens blur
inherent in the imaging system. In a sense, this is equivalent
to a low-pass filter being applied to the signal creating one
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form of noise. As the test pattern approaches (and passes)
the Nyquist frequency, we begin to observe aliasing noise.
The overall noise model presumed is depicted in figure 11.

Given subpixel imaging techniques and combining mul-
tiple images in which projective displacements are present,
it is possible to decrease the effect of the sampling noise
(as shown in [6][10][8]). As shown in the previous work,
as the number of overlapping images grows, the resolution
of a cumulative image will grow reducing the effect of the
sampling noise. In essence, it would be possible to make
the sampling noise small enough such that the lens blur
would dominate and make the sampling noise insignificant.
This would also have the effect of moving the Nyquist rate
farther to the right in figure 9. Given enough images, our
version of the modified modulation transfer function would
converge to the usual modulation transfer function. Note
however, that the Heisenberg-Gabor figure-of-merit would
not converge to the values presented in [5], as given this
technique, aliasing would not be a factor as it is in the pre-
vious Heisenberg-Gabor work.

Determining the outcome of the effect of superresolution
on this improved Heisenberg-Gabor method is the topic of
future research. It should be noted that in much of the work
in superresolution, the improved resolution is shown by way
of image results, and is not formally quantified. Our mea-
sure provides a means of quantifying the superresolution
techniques.

Lens
Blur

Sampling
Noise

Undistorted
Signal

Resulting
Signal

Figure 11. The noise model present in the
majority of digital imaging systems. The im-
age is first subjected to blur which is depen-
dent on the lens system used. After the ini-
tial blur, sampling noise is added by the dis-
cretization of the signal in the sensor array.
Further noise may later be added by means
of file compression, however, all tests were
done on raw, uncompressed sensor data.

5 Conclusion

We have shown a method for objectively calculating a
figure-of-merit for a digital imaging system which does not
suffer from problems with regard to aliasing. Unlike [5],
where aliasing perturbed values in regions of an underlying
modulation transfer function, our method avoids these prob-
lems by discounting the regions in which aliasing occurs.

We tested our method with a Nikon D70 camera, fitted
with a Nikkor 18-70mm lens.
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